What is Chemistry? Why Should we Study Chemistry?

What is Chemistry?

Chemistry is the study of matter, its properties, how and why substances combine or separate to form other substances, and how substances interact with energy. Many people think of chemists as being white-coated scientists mixing strange liquids in a laboratory, but the truth is we are all chemists. Understanding basic chemistry concepts is important for almost every profession. Chemistry is part of everything in our lives.

Every material in existence is made up of matter — even our own bodies. Chemistry is involved in everything we do, from growing and cooking food to cleaning our homes and bodies to launching a space shuttle. Chemistry is one of the physical sciences that help us to describe and explain our world.

There are five main branches of chemistry, each of which has many areas of study.

Analytical Chemistry

It uses qualitative and quantitative observation to identify and measure the physical and chemical properties of substances. In a sense, all chemistry is analytical.

Physical Chemistry

It combines chemistry with physics. Physical chemists study how matter and energy interact. Thermodynamics and quantum mechanics are two of the important branches of physical chemistry.

Organic Chemistry:

It specifically studies compounds that contain the element carbon. Carbon has many unique properties that allow it to form complex chemical bonds and very large molecules. Organic chemistry is known as the “Chemistry of Life” because all of the molecules that make up living tissue have carbon as part of their makeup.

Inorganic Chemistry

It studies materials such as metals and gases that do not have carbon as part of their makeup.
Biochemistry: is the study of chemical processes that occur within living organisms.

Fields of Study / Future in Chemistry

Within these broad categories are countless fields of study, many of which have important effects on our daily life. Chemists improve many products, from the food we eat and the clothing we wear to the materials with which we build our homes. Chemistry helps to protect our environment and searches for new sources of energy.

Food chemistry

Food science deals with the three biological components of food — carbohydrates, lipids and proteins. Carbohydrates are sugars and starches, the chemical fuels needed for our cells to function. Lipids are fats and oils and are essential parts of cell membranes and to lubricate and cushion organs within the body. Because fats have 2.25 times the energy per gram than either carbohydrates or proteins, many people try to limit their intake to avoid becoming overweight.

Proteins are complex molecules composed of from 100 to 500 or more amino acids that are chained together and folded into three-dimensional shapes necessary for the structure and function of every cell. Our bodies can synthesize some of the amino acids; however, eight of them, the essential amino acids, must be taken in as part of our food. Food scientists are also concerned with the inorganic components of food such as its water content, minerals, vitamins and enzymes.

Environmental chemistry

Environmental chemists study how chemicals interact with the natural environment. Environmental chemistry is an interdisciplinary study that involves both analytical chemistry and an understanding of environmental science. Environmental chemists must first understand the chemicals and chemical reactions present in natural processes in the soil water and air. Sampling and analysis can then determine if human activities have contaminated the environment or caused harmful reactions to affect it.

Agricultural chemistry

Agricultural chemistry is concerned with the substances and chemical reactions that are involved with the production, protection and use of crops and livestock. It is a highly interdisciplinary field that relies on ties to many other sciences. Agricultural chemists may work with the Department of Agriculture, the Environmental Protection Agency, the Food and Drug Administration or for private industry. Agricultural chemists develop fertilizers, insecticides and herbicides necessary for large-scale crop production. They must also monitor how these products are used and their impacts on the environment. Nutritional supplements are developed to increase the productivity of meat and dairy herds.

Chemical engineering

Chemical engineers research and develop new materials or processes that involve chemical reactions. Chemical engineering combines a background in chemistry with engineering and economics concepts to solve technological problems. Chemical engineering jobs fall into two main groups: industrial applications and development of new products.


Geochemists combine chemistry and geology to study the makeup and interaction between substances found in the Earth. Geochemists may spend more time in field studies than other types of chemists. Many work for the U.S. Geological Survey or the Environmental Protection Agency in determining how mining operations and waste can affect water quality and the environment. They may travel to remote abandoned mines to collect samples and perform rough field evaluations, and then follow a stream through its watershed to evaluate how contaminants are moving through the system. Petroleum geochemists are employed by oil and gas companies to help find new energy reserves. They may also work on pipelines and oil rigs to prevent chemical reactions that could cause explosions or spills.

Forensic chemistry

Forensic chemists capture and analyze the physical evidence left behind at a crime scene to help determine the identities of the people involved as well as to answer other vital questions regarding how and why the crime was carried out. Forensic chemists use a wide variety of analyzation methods, such as chromatography, spectrometry and spectroscopy.

Leave a Reply